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ABSTRACT: In this work a sufficient condition is given to guarantee the stability of the Hopfiel linear 

network in continuous time (LHN), since the LHN is used to solve the Wienner Hopf equation. Finally, the 

postulated is verified by the simulation in Matlab of the transient response of an LHN of order 4 
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I. INTRODUCTION 
Fig.1 shows the structure of a Wienner filter. 

 

 
Figure 1.Wienner Filter. 

 

The objective of the system is to determine the optimal set of weights {k} such that they minimize the difference 

in the mean squared error between the output y(n) and a desired response d(n). The output of the filter y(n) is 

given in (1): 

 

y n =  ωk u n − k 

∞

k=0

 (1) 

And the error in (2): 

e n = d n − y(n) (2) 

As a measure of filter performance, the mean square error in (3) is defined by: 

J =
1

2
E e2(n)  (3) 

Where E[] represents expected value. The mean square error has its optimal value Jmin, (see in [1]) when the 

WiennerHopf equation given by (4) is satisfied: 

 ωok rxx  j − k 

∞

j=0

= rxd  k , for k = 1,2,… (4) 

whereok is the k-th optimum weight, rxx(j-k) in (5): 

rxx (j– k) = E[u(n –  k)u(n –  j)] (5) 

is the auto-correlation function of the input, and rxd(k) in (6): 

rxd (k) = E[d(n)u(n –  k)] (6) 

is the cross-correlation function between the desired input and output. Note that (5) is symmetric, that is, rxx(j–

k)=rxx(k–j). Defining, 

𝐮 𝐧 = [u n , u n − 1 , u n − 2 ,… ]T  

the auto-correlation matrix is obtained in (7): 
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𝐑 = E 𝐮 𝐧 𝐮𝐓(𝐧) =  
rxx  0 rxx  1 ⋯

rxx  1 rxx  0 ⋯
⋮ ⋮ ⋮

  (7) 

and the cross-correlation vector in (8): 

𝐩 = E 𝐮 𝐧 d(n)) =  u n d(n) u n − 1 d(n) ⋯ T  (8) 

so that, the Wiener Hopf equation in matrix form is given in (9): 

𝐑𝛚𝐨 = 𝐩 (9) 

 

The problem of finding the optimal weights in the Wienner filter requires infinite information, so that it 

is replaced by a finite filter and instead of solving (9), adaptive filtering is used. The basic structure of an 

adaptive filter is shown in Fig.2 The main characteristic of adaptive systems is their adaptability, that is, instead 

of being built by specification, they use the instantaneous error to fix their weights through systematic 

procedures called rules or learning algorithms (for a complete review of the popular algorithms see [2]), whose 

object is to minimize the error in the mean quadratic sense. 

 

 
Figure 2.Structure of an adaptive filter. 

 

 Continuous-time LHN is a good alternative to solve by estimators of the autocorrelation matrix R and 

the cross-correlation vector p the Wiener Hopf equation, without the need to resort to the matrices inversion 

process, since its response in steady state is similar to the solution in (9). However, for this to happen the 

stability of the LHN must be guaranteed. The LHN is not a learning algorithm, so it must receive the input of the 

estimators of R, pto obtain the optimal parameters 0. In this way the LHN provides the best solution to the 

problem. In the present work a sufficient condition is provided so that the LHN of any order is stable. This is of 

paramount importance, since it guarantees its stability in a general way. 

The work is organized as follows: Section 2 sets forth the definitions and propositions of matrices stability 

theory necessary for the development of the work. In section 3 the Hopfield neural network in continuous time 

(HNN) and its variant, the LHN, is introduced. Likewise, a theorem is postulated and demonstrated in which it 

establishes the sufficient condition for the LHN to be stable. In this same section, the system response is 

obtained in steady state when the input signals are constant. In section 4 the condition in the previous section is 

verified by a simulation in Matlab. Finally, in section 5 the conclusions of the work, its limitations and future 

work are given. 

 

II. PRELIMINARY 
From the reference [3] most of the definitions and propositions that were enunciated in this section and 

that are useful to establish the condition of stability of the LHN were taken. 

Definition 2.1. Let A be a matrix of size n, with entries in, A is a Hermitian matrix if A=A*, where A* is the 

transposed conjugate of A. If A has only entries in, it will be said that A is symmetric and A*=A
T
. 

Definition 2.2. Let A be a Hermitian matrix of size n, then: 

• A is positive definite, if 𝑥∗𝐴𝑥 > 0for all  xℂ𝑛  

• A is defined negative, if𝑥∗𝐴𝑥 < 0for all  xℂ𝑛  

Proposition 2.3. Let A be a real matrix of size n, if A is symmetric, then all its eigenvalues are real. 

Demonstration 

Let  be an eigenvalue of A, then it is true that for a vector x0 in ℂ𝑛 , Ax=x Then, 

𝑥∗𝐴𝑥 =  𝐴𝑇𝑥 ∗𝑥 
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𝑥∗ 𝐴𝑥 =  𝐴𝑥 ∗𝑥 

𝑥∗ 𝜆𝑥 =  𝜆𝑥 ∗𝑥 

𝜆 𝑥∗𝑥 = 𝜆  𝑥∗𝑥  

 𝜆 − 𝜆   𝑥∗𝑥 = 0 

Concluding therefore, ℝ. 

Proposition 2.4. Let A be a real and symmetric matrix of size n, then A is definite negative if, and only if, all its 

eigenvalues are negative. 

Demonstration 

First, suppose that A is defined as negative. Let x be an eigenvector associated with the eigenvalue . So, 

𝑥𝑇𝐴𝑥 = 𝑥𝑇𝜆𝑥 = 𝜆𝑥𝑇𝑥 = 𝜆 𝑥 2 < 0 

Since A is symmetric all the eigenvalues are real, concluding that <0. 

Now suppose that all eigenvalues are negative. Since A is symmetric all its eigenvalues are real, in addition 

there is an orthonormal basis formed by all the eigenvectors of A, namely, {x1,x2,…,xn}, such that any  x0 con 

xℝ𝑛  x=a1x1+a2x2+…+anxn. So, 

𝑥𝑇𝐴𝑥 = 𝜆 𝑥 2 = 𝜆 𝑎1
2 𝑥1 

2 + 𝑎2
2 𝑥2 

2 +  + 𝑎𝑛
2 𝑥𝑛 

2 < 0 

Definition 2.5. For zℝ  it will be said that, with 𝑃 𝑧 = 𝑧𝑛 + 𝑎1𝑧
𝑛−1 + ⋯+ 𝑎𝑛−1𝑧 + 𝑎𝑛 ,  with aiℝ it is a 

polynomial of Hurwitz, if all its roots have real negative part. 

Definition 2.6. The characteristic polynomial of a matrix A of dimension n is given by: 

𝑝 𝜆 = 𝑑𝑒𝑡 𝜆𝐼 − 𝐴 = 𝜆𝑛 + 𝐶1𝜆
𝑛−1 +⋯+ 𝐶𝑛−1𝜆 + 𝐶𝑛  

Where all the Cirepresent the sum of all the minor principles signed in the order of i (see in [4]) 

Proposition 2.7.A real, symmetric matrix of size n is defined negative, if and only if, its characteristic 

polynomial is a Hurwitz polynomial. 

Demonstration 

If A is defined negative all the roots of its characteristic polynomial (eigenvalues) are negative, and therefore, it 

is concluded that it is a polynomial of Hurwitz. On the other hand, if its characteristic polynomial is a Hurwitz 

polynomial all its roots (eigenvalues) have real negative part, then as A is symmetric its eigenvalues are real and 

negative, concluding so that A is defined negative. 

 

1. Continuous-time Hopfieldnetwork 

The Hopfield network of order n in continuous time (see in [5]) bases its realization on the circuit shown in Fig. 

3 (see [6]) and described in (10): 

𝐶
𝑑𝑥𝑖
𝑑𝑡

= −
1

𝑅
𝑥𝑖 +  𝑤𝑖𝑗 𝑓 𝑥𝑗  

𝑛

𝑗=1

+ 𝑏𝑖  (10) 

For i=1,...,n, where xi (voltage signal) represents the activity of the ith-neuron, wij (gain of the transconductance 

amplifier), the synaptic weight corresponding to the synaptic connection between the jth-neuron and the neuron 

i-th is symmetrical, bi (current signal) is an external input, R (electrical resistance), and C (electric capacitance) 

are positive constants and f() (activation function) is a non-linear function. 

 
Figure 3. Continuous-time Hopfield network (T-mode circuit). 

1.1. Continuous-time Hopfieldnetwork 

Then the transconductance amplifiers in Fig. 3 are replaced by multipliers in transconductance  mode, 

such that wij=gmvij. In this case, gm represents the gain of the multiplier and vij is an external input with voltage 

dimensions. Also, the activation function is replaced by the linear function f(x)=x, or what is the same, a 

feedback loop is introduced at the output of each neuron as shown in Fig. 4 
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Figure 4.Continuous-time linear Hopfield network. 

 

The model in Fig. 4 represents the linear Hopfield network in continuous time (LHN) and is described by the 

system of linear equations in (11): 

𝐶
𝑑𝑥𝑖
𝑑𝑡

= −
1

𝑅
𝑥𝑖 + 𝑔𝑚  𝑣𝑖𝑗 𝑥𝑗

𝑛

𝑗=1

+ 𝑏𝑖  (11) 

For i=1, ..., n, written in matrix form is given by (12): 

𝒙 = −𝜔0 𝑰 − 𝑔𝑚𝑅𝑽 𝒙 +𝜔0 𝑅𝒃  (12) 

Where 0=1/RC is a positive constant having angular frequency dimensions (rad/s); I is the identity matrix of 

size n; V is a symmetric matrix of size n1 and b is an array of size n1 that contains the entries to the system 

and x an array of size n1 that represents the output of the system. 

1.2. Stability 

This section gives a sufficient condition for the LHN to be stable. We begin by rewriting the system in (12) by 

the equation of state in (13): 

𝒙 = 𝑩𝒙+ 𝑪𝒃 (13) 

 

The equation given in (13) represents a linear system, where B=–0A, is the coefficient matrix of the 

homogeneous system, of size nn with A=I–gmRV, C is a diagonal matrix of size nn with all its diagonal 

elements given by 0R and b is the input signal matrix of size n1. 

Definition 3.1. A linear system as described in (13) is stable if the characteristic polynomial of matrix B is a 

Hurwitz polynomial. 

Definition 3.2. An array A of size n is strictly diagonal by row if the condition in (14) is satisfied: 

 𝑎𝑖𝑖  >   𝑎𝑖𝑗  

𝑗≠𝑖

 (14) 

For i = 1, ..., n. It is said that A is strictly diagonal by column, if A
T
 is strictly diagonal by row. 

Proposition 3.3. Let A be a real matrix, symmetric and strictly diagonal dominant. If aii>0 for i=1, ..., n, then A 

is defines defined positive. 

Demonstration 

It should be shown that x
T
Ax>0 for each x0, with x on ℝ. First, since A is strictly diagonal dominant and aii>0, 

(15) follows from (14): 

𝑎𝑖𝑖 −  𝑎𝑖𝑗  

𝑗≠𝑖

> 0 (15) 

For i=1, ..., n. On the other hand, x
T
Ax is developed in (16): 

𝑥𝑇𝐴𝑥 =   𝑎𝑖𝑗 𝑥𝑖𝑥𝑗

𝑛

𝑖=1

𝑛

𝑖=1

=  𝑎𝑖𝑖𝑥𝑖
2

𝑛

𝑖=1

+   𝑎𝑖𝑗 𝑥𝑖𝑥𝑗
𝑗≠𝑖

𝑛

𝑖=1

=  𝑎𝑖𝑖𝑥𝑖
2

𝑛

𝑖=1

+   𝑎𝑖𝑗 + 𝑎𝑗𝑖  𝑥𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

 (16) 

Completing perfect square trinomial in the second sum term, 

 𝑎𝑖𝑗 + 𝑎𝑗𝑖  𝑥𝑖𝑥𝑗 =
 𝑎𝑖𝑗 + 𝑎𝑗𝑖  

2
 𝑥𝑖 ± 𝑥𝑗  

2
−  

 𝑎𝑖𝑗 + 𝑎𝑗𝑖  

2
𝑥𝑖

2 +
 𝑎𝑖𝑗 + 𝑎𝑗𝑖  

2
𝑥𝑗

2  

(17) isobtained: 

𝑥𝑇𝐴𝑥 =   𝑎𝑖𝑖𝑥𝑖
2 − 𝑥𝑖

2  
 𝑎𝑖𝑗 + 𝑎𝑗𝑖  

2

𝑛

𝑗≠𝑖

 

𝑛

𝑖=1

+   
 𝑎𝑖𝑗 + 𝑎𝑗𝑖  

2
 𝑥𝑖 ± 𝑥𝑗  

2
𝑛

𝑗=𝑖+1

𝑛

𝑖=1

 (17) 

Considering that A is symmetric, aij=aji, (17) can be rewritten as, 

𝑥𝑇𝐴𝑥 =  𝑥𝑖
2  𝑎𝑖𝑖 −  𝑎𝑖𝑗  

𝑛

𝑗≠𝑖

 

𝑛

𝑖=1

+  
 𝑎𝑖𝑗 + 𝑎𝑗𝑖  

2
 𝑥𝑖 ± 𝑥𝑗  

2
𝑛

𝑗=𝑖+1

𝑛

𝑖=1

 

Concluding from (15) that x
T
Ax>0. 

Theorem 3.4.If 𝑣𝑖𝑗  <
1

𝑛𝑔𝑚 𝑅
for  i,j=1, ..., n where n is the order of the LHN, then the LHN of order n is stable. 
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III. DEMONSTRATION 
Given that the matrix B is symmetric, according to definition 3.1 and proposition 2.7 it suffices to 

prove that it is defined negative or that A is defined positive. For this, in the light of proposition 3.3, it must be 

fulfilled that aii> 0 and that A is strictly diagonal dominant. 

First, it is observed that, the elements in the main diagonal of the matrix A are given by𝑎𝑖𝑖 = 1 − 𝑔𝑚𝑅𝑣𝑖𝑖  for  

i,j=1,….n. Using the hypothesis it follows that the 𝑎𝑖𝑖 = 1− 𝑔𝑚𝑅𝑣𝑖𝑖  are contained in the open 

interval 
𝑛−1

n
,
𝑛+1

𝑛
  , so that   aii>0 for i=1,...n Now consider the elements outside the diagonal of A, 𝑎𝑖𝑗 =

−𝑔𝑚𝑅𝑣𝑖𝑗  for ji using the hypothesis again, it follows that  𝑎𝑖𝑗  <
1

𝑛
  it follows that   𝑎𝑖𝑗  𝑗≠𝑖 <

𝑛−1

𝑛
  for i = 1, 

..., n, satisfying (14) and concluding that A is defined positive. 

1.3. Steady-state response 

The transient response of the system in (13) is given by (18) (see [7]): 

𝒙 𝑡 = 𝑒𝑩𝑡𝒙 𝑡0 +  𝑒𝑩 𝑡−𝜏 𝑪𝒃 𝜏 𝑑𝜏
𝑡

𝑡0

 (18) 

Where, x(t0) is a start condition for t00 and e
Bt

 is a matrix containing terms of the form, 𝑡 ∝𝑖−1 𝑒𝜆𝑖𝑡fori=1,…k 

withi multiplicity of each eigenvalue . On the other hand, if t=0, e
B(0)

=I. Ifb(t)=b=cte. (18) has thesolution in 

(19): 

𝒙 𝑡 = 𝑒𝑩𝑡𝒙 𝑡0 − 𝑩
−1 𝑰 − 𝑒𝑩 𝑡−𝑡0  𝑪𝒃 (19) 

If the system is stable, all its eigenvalues are negative, followed by therefore, the steady-state 

response of the system is as in (20), 

𝒙𝑠𝑠 = −𝑩−1𝑪𝒃 (20) 

Substituting B=-0(I-gmRV), C=0RI in (20), we obtain the expression in (21): 

𝒙𝑠𝑠 =  𝑰 − 𝑔𝑚𝑅𝑽 
−1 𝑅𝒃  (21) 

The speed, with which the system reaches the steady state, depends on the dominant eigenvalue (the one closest 

to 0). 

2. Simulation and results 

In this section a simulation is performed in Matlab to verify Teo.3.4 and (21), the procedure used is listed below. 

 

Step 1: The constants were defined gm=25A/V
2
, R=1k y C=100F n=4 (order of the LHN) and bmax=5mA 

(maximum allowable current at the network input). Thus, according to Teo.3.4, in order for the RNL to be 

stable, it must be satisfied (22): 

 𝑣𝑖𝑗  < 10𝑉𝑓𝑜𝑟𝑖, 𝑗 = 1,2,3,4 (22) 

Step 2: The matrix C of the state equation in (13), is obtained by multiplying 0RI, donde0=1/(RC). 

Step 3: The matrix B=-0(I-gmRV) of the homogeneous state equation in (13) was obtained by generating the 

real and symmetric voltage matrix V at random, where each element of vij for i,j=1,2,3,4, is a discrete random 

variable with uniform distribution in the set {-9,-8,…,8,9}V, which guarantees the fulfillment of (22). For this, 

we used the randi instruction of Matlab. 

Step 4: Each element of matrix b in (13) was obtained similarly to vij with the randi instruction, but in the 

discrete set {1,…,bmax}. 

Step 5: The dominant eigenvalue (the maximum) of matrix B is obtained and the parameter =-1/max. is 

defined. 

Step 6: The output x of (13) is obtained in a transient regime with the instruction lsim of Matlab, giving a time 

interval of duration 5, in order that the system reaches its steady state xss given in (21). 

Step 7: The direct calculation of xss is performed in (21) and plotted together with the transient response that 

was obtained in step 6. 

Steps 3 to 7 were performed 3 times in sequence with different matrices B and b. The initial state of each stage 

x0 corresponds to the final state of the previous stage. The initial state of the first stage was set to 0. Theresults 

of thesimulation are shown in Fig. 5. 
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Figure 5.Transient response of an LHN of order 4. 

 

IV. CONCLUSION 
In the present work a sufficient condition is given for the LHN to be stable under specific constraints of 

the input voltage variables, vij, for i,j=1,1,…,n. Ensuring the stability of the LHN is of paramount importance to 

solve the Wiener Hopf equation without resorting to matrix inversion. On the other hand, the region of 

frequency operation of the network depends on the dominant eigenvalue of the matrix of the homogeneous 

equation B, ignoring the dependence of said eigenvalue with the parameters of the network is a limiting factor 

for its operation when the signal of input b=b(t) is time dependent. Therefore, it is necessary in the future to 

perform the frequency analysis of the LHN. 
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